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Introduction

The assessment of the range of uncertainty for room
acoustic parameters is an ongoing research topic. ISO
3382 demands the calculation of the uncertainty accord-
ing to the GUM. However, the separation and determi-
nation of the main influence factors and their contribu-
tion is still not fully solved. Mainly the position of the
sound source and the microphones, [1, 2, 3] background
noise [4, 5, 6] and the loudspeaker directivity pattern [7]
are currently addressed due to strong deviations observed
in the past. In this contribution we explain an existing
modeling technique of non-linear systems that is used to
simulate the effect of loudspeaker distortion in impulse
response measurements. Generic impulse responses are
used to simulate a room acoustic measurement. We will
analyze which room acoustic parameters are potentially
affected. The evaluation of the room acoustic parame-
ters leads to a scenario with controllable degree of loud-
speaker distortion without the influence of the other un-
certainty factors priorly addressed. This simulation ap-
proach is validated by measurement results with different
amplifications in auditoria using exponential sweep mea-
surements.

Emulation of Measurement Chain

The approach in this paper uses the open source ITA-
Toolbox for MATLAB (www.ita-toolbox.org) [8] includ-
ing the additional open-source applications measurement
and the roomacoustics. The block diagram used for the
emulation of the measurement chain is depicted in Fig-
ure 1. In this work quantization and noise are switched
off to analyze the influence of nonlinearities separately.
Nonlinearities are assumed to be added mainly by the
loudspeaker and hence the nonlinear model block is in-
troduced prior to the linear room acoustic transfer func-
tion.

Figure 1: Block diagram used to emulate the measurement
chain including quantization, sampling, linear transfer char-
acteristics H(f) and simple polynomial nonlinear model.

The impulse response or transfer function H(f) for the
ongoing uncertainty analysis is taken from an analytic
model for rectangular rooms with rigid boundaries as de-
scribed in [9]. This approach allows for arbitrary decays
and noiseless input data. The ideal impulse response

used in this paper is shown in Figure 2. The room was
chosen with dimensions 8 × 5 × 3 meters. A mean re-
verberation time of 1 s was used to calculate the modal
damping constants. The maximum frequency was set to
4 kHz.
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Figure 2: Ideal impulse response obtained by modal super-
position with a simple analytic model for rectangular rooms
used in the emulation of the measurement chain.

Modeled Loudspeaker Nonlinearities

As electrodynamic loudspeakers are known to show non-
linear behavior if driven with relatively high input volt-
ages [10], the loudspeaker is approximated by a simple
polynomial nonlinear model as proposed by Novak [11]
and also published slightly different in [12]. It has been
proven that sweep measurements are not able to sup-
press artefects caused by nonlinearites in general [13].
Especially odd ordes can severely influence the impulse
response that can be obtained after applying a time win-
dow to suppress harmonic impulse repsonses [14].

The model can be simply written in a continuous manner
for the output signal g(t) depending on the input singal
s(t) and the polynomial coefficients ck for the order k as:

g(t) =
∑
k

= ck · sk (t) . (1)

Due to the necessary time-discretization in computer pro-
gramm the Nyquist theorem has to be considered for
k > 1. Hence, the discrete time signal cannot be e.g.
squared sample wise. A proper low-pass filter or a com-
bination of oversampling, exponentiation and downsam-
pling has to be used instead to avoid aliasing artefacts.

In order to study the influence of even and odd orders
independently the two polynoms g (t)even = s(t) + s2(t)
and g (t)odd = s(t) + s3(t). Higher orders are not used in
this work as this would not add more information for the
demonstration of the artefacts. Since we concentrate on
sweep measurements two different artefacts are expected
for the even and odd orders. The input-output-diagram
for both polynoms is depicted in Figure 3. For the level of
0 dBFS the linear and the non-linear parts have the same



energy. This is chosen as a worst case scenario. Expe-
rienced operators investigate the level of total harmonic
distortion that is typically far below 10 %.
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Figure 3: Input-output-diagram for g (t)even and g (t)odd
used as two simple non-linear models.

Overlapping Harmonics –– All orders

The harmonic impulse responses appear prior to the fun-
damental impulse response. The time ∆tk between the
fundamental impulse response and the harmonic k is
given as

∆tk =
log2(k)

rs
, (2)

where rs is the sweep rate for exponential sweeps that
represents the frequency range of the sweep in octaves
normalized to the signal length in seconds. Details on
the time shift and an explaination that the harmonics
impulse responses are also shifted in phase can be found
e.g. in [14, 15, 16, 17].

In case the time for the second harmonic tk is smaller
than approx. the reverberation time this second har-
monic overlaps with the fundamental impulse response,
that carries the information. We chose the sweep rate
in a way that the second harmonic (even order) partly
overlaps with the fundamental impulse response but the
third harmonic (odd order) does not. Hence, the influ-
ence due to this overlapping can be studied by varying
the amplitude of the excitation signal (e.g. sweep). For
increasing amplitudes the second harmonic will increase
in relation to the fundamental impulse response.

Deviation in Fundemantal –– Odd orders

As already published by Torras-Rosell et al. in
[13] the fundamental impulse response is influenced by
odd polynomial orders. This can be shortly explained

by the fact that a polynom g(t) = s3(t) will respond to a
sine with specific frequency at the input with two sines at
the output—one with the same frequency and one with
three times the frequency. The same behavior can than
be found for sweeps. As long as the level is kept con-
stant between two measurements the fundemental will
not change [18]. By using the odd order polynom godd(t)
this effect can be modeled with a variation of the driving
amplitude at the input of the non-linear model as well.

Simulation Results

Simulations with the simple non-linear model using both
polynoms are carried out. The driving amplitude of the
sweep called—output amplification in the following—is
increased step-wise to increase the influence of the non-
linearities. The length of the sweep was approx. 4 s fol-
lowed by a silence of 2 s. The sampling rate was 44100 Hz
and the frequency range of the sweep was 100 Hz to
16 kHz. Hence, the sweep rate was 1.9 oct./s.

The resulting impulse response obtained by the emulated
measurement for the even order polynom is shown in Fig-
ure 4. As can be seen, the deviation compared to the ideal
impulse reponse due to overlapping in the beginning of
the simulated impulse response is approx. 40 dB below
the level of the ideal impulse reponse. Due to the small
deviation only small deviations of the room acoustic pa-
rameters are to be expected.
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Figure 4: Simulation of impulse response with emulated
measurement chain using the non-linear model g (t)even (top)
and deviation from ideal impulse response

The error in the room acoustic parameters due to a more
and more overlapping second harmonic is depicted in Fig-
ure 5 for the early decay time and the clarity index. Fig-
ure 6 shows the error in the sound strength including the
simulated impulse resonse and the error due to a simple
change in level of the fundamental without using the im-
pulse response in the emulated measurement chain. Due
to the overlapping, errors in the room acoustic param-
eters can be observed. As mentioned earlier the energy
of the overlapping harmonic had 40 dB less energy than
the fundamental. Hence, the sweep rate should be always
chosen to avoid such overlapping as the errors are already



in the same order of magnitude as the just noticeble dif-
ference of approx. 5 % for reverberation times and 1 dB
for the clarity index [19]. In case, without the impulse
response no error in gain is theoretically expected.
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Figure 5: Error in the room acoustic parameters EDT (left)
and C80 (right) for different levels of the excitation signal and
even order polynom.
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Figure 6: Error in the room acoustic parameter sound
strength G (left) and theoretical error due to level change
(right) for different levels of the excitation signal and even
order polynom.

For the odd orders, the impulse response of the third
harmonic can be clearly seen in the end of the impulse
response in Figure 7. But more interestingly, the funda-
mental impulse response has also changed as can be seen
in the difference plot. The level of the deviation is almost
as high as the ideal impulse response itself. Hence, errors
in the room acoustic parameters might occur.
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Figure 7: Simulation of impulse response with emulated
measurement chain using the non-linear model g (t)odd (top)
and deviation from ideal impulse response (bottom)

The room acoustic parameters EDT and C80 are shown
in Figure 8 in the same manner as for the even order. The
errors are much smaller than for the even order polynom
as almost no overlapping occurs. The error in sound
strength is shown in Figure 9.
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Figure 8: Error in the room acoustic parameters EDT (left)
and C80 (right) for different levels of the excitation signal and
odd order polynom.
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Figure 9: Error in the room acoustic parameter sound
strength G (left) and theoretical error due to level change
(right) for different levels of the excitation signal and odd
order polynom.

Measurement Results

A measurement was carried out in the large auditorium
Aula I at RWTH Aachen University at several positions.
The mid-frequency loudspeaker of the three-way dodec-
ahedron loudspeaker developed by ITA was used. The
ITA-Toolbox with MATLAB was used for the measure-
ments. During these measurements the dependency of
the parameter sound strength was observed first and the
investigation using the nonlinear model followed.

Figure 10 shows the observed dependence of the sound
strength due to a change of amplification level. The ac-
tual change of the level is compensated for during the
measurement. The observed deviation might therefore
be due to a nonlinear element in the measurement chain,
which is assumed to be the loudspeaker.
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Figure 10: Measured dependence of the sound strength due
to a change of amplification level.

Conclusion

A complete emulation of a measurement chain including
nonlinearities has been implemented in MATLAB with
the ITA-Toolbox and is freely available. This emula-
tion uses a simple polynomial non-linear model. It was
used to analyze uncertainties firstly observed in the mea-
surement of the room acoustic parameter sound strength.
The influences of nonlinearities on the impulse response



and hence on the room acoustic parameters were studied
for even and odd orders separately for exponential sweep
measurements. 1 Even and odd orders of the non-linear
model show different effects. Odd orders influence the
fundamental impulse response. Even orders were used
to control the overlap of harmonic impulse responses in
sweep measurements with the fundamental. The rever-
beration time and also the relative energy parameters
e.g. clarity or definition, are not really affected by the
frequency independent non-linearies of odd polynomial
order but of even order due to this overlapping. Sweep
parameters should be chosen carefully to avoid possible
overlapping as the errors in the studied example were
already in the same order of magnitude as the just noti-
cable difference for these parameters.

The parameter sound strength is subject to a calibration
measurement and the fundamental impulse response of
loudspeaker might deviate in the calibration measure-
ment in free-field and the actual measurement in the
room, due to level changes as observed in the measure-
ment. The emulation of the measurement chain was able
to simulate this behavior. Besides the influence of the
overlapping this parameter is in contrary to the rela-
tive parameters very sensitive to odd polynomial orders.
Uncertainties in e.g. lateral fraction due to such non-
linearities are not expected by the authors as always two
microphone signals are compared that originate from the
same loudspeaker with the same amplitude and hence
the same non-linearities. However, a simulation should
be studied in future.
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